Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 23
Filtre
1.
researchsquare; 2021.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-269242.v1

Résumé

Safe and effective vaccines will provide essential medical countermeasures to tackle the COVID-19 pandemic. Here, we evaluate the safety, immunogenicity and efficacy of the intradermal delivery of INO-4800, a synthetic DNA vaccine candidate encoding the SARS-CoV-2 spike protein in the rhesus macaque model. Single and 2 dose vaccination regimens were evaluated. Vaccination induces both binding and neutralizing antibodies, along with IFN-γ-producing T cells against SARS-CoV-2. Upon administration of a high viral dose (5 x 106 pfu) via the intranasal and intratracheal routes we observe significantly reduced virus load in the lung and throat, in the vaccinated animals compared to controls. 2 doses of INO-4800 is associated with more robust vaccine-induced immune responses and improved viral protection. Importantly, histopathological examination of lung tissue provides no indication of vaccine-enhanced disease following SARS-CoV-2 challenge in INO-4800 immunized animals. This vaccine candidate is currently under clinical evaluation as a 2 dose regimen.


Sujets)
COVID-19
2.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.12.22.423894

Résumé

Since the outbreak of COVID-19, over 200 vaccine candidates have been documented and some of them have advanced to clinical trials with encouraging results. However, the antibody persistence over 3 months post immunization and the long-term memory have been rarely reported. Here, we report that a ferritin nanoparticle based SARS-CoV-2 RBD vaccine induced in mice an efficient antibody response which lasts for at least 7 months post immunization. Significantly higher number of memory B cells were maintained and a significantly higher level of recall response was induced upon antigen challenge. Thus, we believe our current study provide the first information about the long-term antibody persistence and memory response of a COVID-19 vaccine. This information would be also timely useful for the development and evaluation of other vaccines.


Sujets)
COVID-19
3.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.12.22.424071

Résumé

Remdesivir dry powder for inhalation was previously developed using thin film freezing (TFF). A single dose 24 hour pharmacokinetic study in hamsters, a small animal model for SARS-CoV-2, demonstrated that pulmonary delivery of TFF remdesivir can achieve plasma remdesivir and GS-441524 levels higher than the reported EC50s of both remdesivir and GS441524 (in human epithelial cells) over 20 hours. The half life of GS4412524 following dry powder insufflation was about 7 hours, suggesting the dosing regimen would be twice daily administration. Although the remdesivir-Captisol (80/20 w/w) formulation showed faster and greater absorption of remdesivir and GS-4412524 in the lung, remdesivir-leucine (80/20 w/w) exhibited a greater Cmax with shorter Tmax and lower AUC of GS441524, indicating lower total drug exposure is required to achieve a high effective concentration against SAR-CoV-2. In conclusion, remdesivir dry powder for inhalation would be a promising alternative dosage form for the treatment of COVID-19 disease.


Sujets)
COVID-19 , Polypose adénomateuse colique
4.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.12.23.424138

Résumé

The ongoing severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic necessitates the fast development of vaccines to meet a worldwide need. mRNA-based vaccines are the most promising technology for rapid and safe SARS-CoV-2 vaccine development and production. We have designed CVnCoV, a lipid-nanoparticle (LNP) encapsulated, sequence optimised mRNA-based SARS-CoV-2 vaccine that encodes for full length, pre-fusion stabilised Spike protein. Unlike other mRNA-based approaches, CVnCoV exclusively consists of non-chemically modified nucleotides and can be applied at comparatively low doses. Here we demonstrate that CVnCoV induces robust humoral and cellular responses in non-human primates (NHPs). Animals vaccinated with 8 g of CVnCoV were protected from challenge infection with SARS-CoV-2. Comprehensive analyses of pathological changes in challenged animals via lung histopathology and Computed Tomography (CT) scans gave no indication of enhanced disease upon CVnCoV vaccination. These results demonstrate safety, immunogenicity, and protective efficacy of CVnCoV in NHPs that extend our previously published preclinical data and provide strong support for further clinical testing in ongoing phase 2b/3 efficacy studies.


Sujets)
Infections à coronavirus
5.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.12.22.423965

Résumé

Timely development of vaccines and antiviral drugs are critical to control the coronavirus disease 2019 (COVID-19) global pandemic. Current methods for validation of vaccine efficacy involve the use of pseudoviruses, such as the SARS-CoV-2 spike protein (S) pseudotyped lentivirus or vesicular stomatitis virus (VSV), to quantify neutralizing antibodies for blocking viral infection. The process of pseudovirus infection and quantification is time consuming and can take days to complete. In addition, pseudoviruses contain structural proteins not native to SARS-CoV-2, which may alter particle properties in receptor binding and responses to antibody neutralization. Here we describe the development of a new hybrid alphavirus-SARS-CoV-2 particle (Ha-CoV-2) for rapid screening and quantification of neutralization antibodies and antiviral drugs. Ha-CoV-2 is a non-replicating SARS-CoV-2 virus-like particle, composed of only SARS-CoV-2 structural proteins (S, M, N, and E) and a RNA genome derived from a fast expressing alphavirus vector. We demonstrate that Ha-CoV-2 can rapidly and robustly express reporter genes in target cells within 3-5 hours following viral entry. We further validate the Ha-CoV-2 system for rapid quantification of neutralization antibodies and antiviral drugs. In addition, we assembled a Ha-CoV-2 particle bearing the D614G mutant spike protein, and found that the mutation led to an approximately 200% increase in virion infectivity. These results demonstrate that Ha-CoV-2 can also be applied for rapid monitoring and quantification of viral mutations for effects on neutralizing antibodies induced by vaccines.


Sujets)
COVID-19 , Maladies virales , Stomatite vésiculeuse
6.
researchsquare; 2020.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-133970.v1

Résumé

Vaccines against SARS-CoV-2 are urgently required. Here we report detailed immune profiling after ChAdOx1 nCoV-19 (AZD1222) and subsequent challenge in two animal models of SARS-CoV-2 mediated disease. We demonstrate in rhesus macaques the lung pathology caused by SARS-CoV-2 mediated pneumonia is reduced by prior vaccination with ChAdOx1 nCoV-19 which induced neutralising antibody responses after a single intramuscular administration. In a second animal model, ferrets, ChAdOx1 nCoV-19 reduced both virus shedding and lung pathology. Antibody titers were boosted by a second dose. Data from these challenge models and the detailed immune profiling, support the continued clinical evaluation of ChAdOx1 nCoV-19.

7.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.12.18.413344

Résumé

The second and third waves of coronavirus disease 2019 (COVID-19) have caused problems worldwide. Those are often thought to have resulted from people's carelessness or people not following restrictions, but in reality, the cause remains unclear. Here, using an objective analytical method, we present the changes in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing COVID-19 over time. The virus has mutated in three major directions, with three groups remaining to date. The basic structure of the groups was completed by April and shared across all continents. However, the virus continued to mutate independently in each country after the borders were closed. In particular, the virus mutated before the occurrence of a second or third peak. It seems that the mutations conferred higher infectivity to the virus, because of which the virus overcame previously effective protections. Currently, each country may possess such a unique stronger variant, which may cause another peak in other countries. These viruses could also serve as sources of mutations by exchanging parts of the genome. Such mutations could create a variant with superior infectivity.


Sujets)
COVID-19 , Infections à coronavirus
8.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.12.21.423721

Résumé

Background: Severe coronavirus disease 2019 (COVID-19) manifests as a life-threatening microvascular syndrome. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses primarily the capsid spike (S) protein to engage with its receptors and infect host cells. To date, it is still not known if the S protein alone, without the other viral elements, is able to trigger vascular cell signalling and provoke cell dysfunction. Methods: We investigated the effects of the recombinant, stabilised S protein on primary human cardiac pericytes (PCs) signalling and function. Endpoints included cell viability, proliferation, migration, cooperation with endothelial cells (ECs) in angiogenesis assays, and release of pro-inflammatory cytokines. Adopting a blocking strategy against the S protein receptors ACE2 and CD147, we explored which receptor mediates the S protein signalling in PCs. Findings: We show, for the first time, that the recombinant S protein alone elicits functional alterations in cardiac PCs. This was documented as: (1) increased migration, (2) reduced ability to support EC network formation on Matrigel, (3) secretion of pro-inflammatory molecules typically involved in the cytokine storm; and (4) production of pro-apoptotic factors responsible for EC death. Furthermore, the S protein stimulates the phosphorylation/activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) through the CD147 receptor, but not ACE2, in cardiac PCs. Accordingly, the neutralization of CD147, using a blocking antibody, prevented the activation of ERK1/2 and partially rescued the PC function in the presence of the S protein. Interpretation: Our findings suggest the new, intriguing hypothesis that the S protein may elicit vascular cell dysfunction, potentially amplifying, or perpetuating, the damage caused by the whole coronavirus. This mechanism may have clinical and therapeutic implication.


Sujets)
Infections à coronavirus , Angor microvasculaire , COVID-19 , Néphrocarcinome , Mort , Cardiopathies
9.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.12.21.423746

Résumé

There is an urgent requirement for safe and effective vaccines to prevent novel coronavirus disease (COVID-19) caused by SARS-CoV-2. A concern for the development of new viral vaccines is the potential to induce vaccine-enhanced disease (VED). This was reported in several preclinical studies with both SARS-CoV-1 and MERS vaccines but has not been reported with SARS-CoV-2 vaccines. We have used ferret and rhesus macaques challenged with SARS-CoV-2 to assess the potential for VED in animals vaccinated with formaldehyde-inactivated SARS-CoV-2 (FIV) formulated with Alhydrogel, compared to a negative control vaccine in ferrets or unvaccinated macaques. We showed no evidence of enhanced disease in ferrets or rhesus macaques given FIV except for mild transient enhanced disease seen at seven days post infection in ferrets. This increased lung pathology was observed early in the infection (day 7) but was resolved by day 15. We also demonstrate that formaldehyde treatment of SARS-CoV-2 reduces exposure of the spike receptor binding domain providing a mechanistic explanation for suboptimal immunity.


Sujets)
Infections à coronavirus , COVID-19
10.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.12.21.423779

Résumé

Oral mouthwashes decrease the infectivity of several respiratory viruses including SARS-CoV-2. However, the precise agents with antiviral activity present in these oral rinses and their exact mechanism of action remain unknown. Here we show that Cetylpyridinium chloride (CPC), a quaternary ammonium compound present in many oral mouthwashes, reduces SARS-CoV-2 infectivity by inhibiting viral fusion with target cells. We also found that CPC and CPC-containing mouth rinses decreased a thousand times the infectivity of SARS-CoV-2 in vitro, while the corresponding vehicles had no effect. CPC-containing mouth rinses could represent a cost-effective measure to reduce SARS-CoV-2 infectivity in saliva, aiding to reduce viral transmission from infected individuals.


Sujets)
Syndrome respiratoire aigu sévère
11.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.12.20.423670

Résumé

Background: Immune system conditions of the patient is a key factor in COVID-19 infection survival. A growing number of studies have focused on immunological determinants to develop better biomarkers for therapies. Aim: The dynamics of the insurgence of immunity is at the core of the both SARS-CoV-2 vaccine development and therapies. This paper addresses a fundamental question in the management of the infection: can we describe the insurgence (and the span) of immunity in COVID-19? The in-silico model developed here answers this question at individual (personalized) and population levels. We simulate the immune response to SARS-CoV-2 and analyze the impact of infecting viral load, affinity to the ACE2 receptor and age in the artificially infected population on the course of the disease. Methods: We use a stochastic agent-based immune simulation platform to construct a virtual cohort of infected individuals with age-dependent varying degree of immune competence. We use a parameter setting to reproduce known inter-patient variability and general epidemiological statistics. Results: We reproduce in-silico a number of clinical observations and we identify critical factors in the statistical evolution of the infection. In particular we evidence the importance of the humoral response over the cytotoxic response and find that the antibody titers measured after day 25 from the infection is a prognostic factor for determining the clinical outcome of the infection. Our modeling framework uses COVID-19 infection to demonstrate the actionable effectiveness of simulating the immune response at individual and population levels. The model developed is able to explain and interpret observed patterns of infection and makes verifiable temporal predictions. Within the limitations imposed by the simulated environment, this work proposes in a quantitative way that the great variability observed in the patient outcomes in real life can be the mere result of subtle variability in the infecting viral load and immune competence in the population. In this work we i) show the power of model predictions, ii) identify the clinical end points that could be more suitable for computational modeling of COVID-19 immune response, iii) define the resolution and amount of data required to empower this class of models for translational medicine purposes and, iv) we exemplify how computational modeling of immune response provides an important light to discuss hypothesis and design new experiments.


Sujets)
COVID-19
12.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.12.21.423787

Résumé

The global battle against the Covid-19 pandemic relies strongly on the human defence of antibody, which is assumed to bind the Receptor Binding Domain of the antigen with its Hypervariable Region. Due to the similarity to other viruses such as SARS, however, our understanding of the antibody-virus interaction has been limited to the genomic sequencing, which poses serious challenges to the containment, vaccine exploration and rapid serum testing. Based on the physical/chemical nature of the interaction, infrared spectroscopy was employed to reveal the binding disparity, when unusual temperature dependence was discovered from the 1550cm 1 absorption band, attributed to the hydrogen bonds by carboxyl/amino groups, binding the SARS-CoV-2 spike protein and closely resembled SARS-CoV-2 or SARS-CoV-1 antibodies. The infrared absorption intensity, associated with the number of hydrogen bonds, was found to increase sharply between 27C and 31C, with the relative absorbance matches at 37C the hydrogen bonding numbers of the two antibody types (19 vs 12). As a result, the specificity of the SARS-CoV-2 antibody will be more conclusive beyond 31C, instead of at the usual room temperature of 20C - 25C, when the vaccine research and antibody diagnosis would likely be undermined.


Sujets)
COVID-19
13.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.12.21.423761

Résumé

This article constructs a restricted infection rate inverse binomial-based approach to predict COVID-19 cases after a family gathering. The traditional inverse binomial (IB) model is unqualified to match the reality of COVID-19, because the data contradicts the models requirement that variance should be greater than expected value. A refined version of the IB model is a necessity to predict COVID-19 cases after family gatherings. Our refined version of an IB model is more appropriate and versatile, as it accommodates all potential data scenarios: equal, lesser, or greater variance than expected value. Application of the approach is based on a restricted infectivity rate and methodology on Fan et al.s COVID-19 data, which exhibits two clusters of infectivity. Cluster 1 has a smaller number of primary cases and exhibits larger variance than the expected cases with a negative correlation of 28%, implying that the number of secondary cases is lesser when the number of primary cases increases and vice versa. The traditional inverse binomial (IB) model is appropriate for Cluster 1. The probability of contracting COVID-19 is estimated to be 0.13 among the primary, but is 0.75 among the secondary in Cluster 1, with a wider gap. Conversely, Cluster 2, exhibits smaller variance than the expected cases with a correlation of 79%, implying the number of primary and secondary cases increase or decrease together. Cluster 2 disqualifies the traditional IB model and demands its refined version. Probability of contracting COVID-19 is estimated to be 0.74 among the primary, but is 0.72 among the secondary in Cluster 2, with a narrower gap. The models ability to estimate the communitys health system memory for future policies to be developed is an asset of this approach. The current hazard level to be infected with COVID-19 among the primary and secondary groups are estimable and interpretable. Author SummaryCurrent statistical models are not able to accurately predict disease infection spread in the COVID-19 pandemic. We have applied a widely-used inverse binomial method to predict rates of infection after small gatherings, going from primary (original) cases to secondary (later) cases after family gatherings or social events, using the data from the Wuhan and Gansu provinces in China, where the virus first spread. The advantages of the proposed approach include that the models ability to estimate the communitys health system memory for future policies to be developed, as such policies might reduce COVIDs spread if not its control. In our approach, as demonstrated, the current hazard level of becoming infected with COVID-19 and the odds of contracting COVID-19 among the primary in comparison to the secondary groups are estimable and interpretable. We hope the proposed approach will be used in future epidemics.


Sujets)
COVID-19
14.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.12.20.423607

Résumé

Engineered red blood cells (RBCs) expressing viral receptors could be used therapeutically as viral traps as RBCs lack nuclei and other organelles required for viral replication. Here we show that the combination of a powerful erythroid-specific expression system and transgene codon optimization yields high expression levels of the HIV-1 receptors CD4 and CCR5, as well as a CD4-glycophorin A (CD4-GpA) fusion protein on enucleated RBCs. Engineered RBCs expressing CD4 and CCR5 were efficiently infected by HIV-1, but CD4 or CD4-GpA expression in the absence of CCR5 was sufficient to potently neutralize HIV-1 in vitro. To facilitate continuous large-scale production of engineered RBCs, we generated erythroblast cell lines stably expressing CD4-GpA or ACE2-GpA fusion proteins, which produced potent RBC viral traps against HIV-1 and SARS-CoV-2. Our results suggest that this approach warrants further investigation as a potential treatment against viral infections.


Sujets)
Maladies virales , Syndrome respiratoire aigu sévère
15.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.12.20.422693

Résumé

Vaccines that generate robust and long-lived protective immunity against SARS-CoV-2 infection are urgently required. We assessed the potential of vaccine candidates based on the SARS-CoV-2 spike in cynomolgus macaques (M. fascicularis) by examining their ability to generate spike binding antibodies with neutralizing activity. Antigens were derived from two distinct regions of the spike S1 subunit, either the N-terminal domain (NTD) or an extended C-terminal domain containing the receptor-binding domain (RBD) and were fused to the human IgG1 Fc domain. Three groups of 2 animals each were immunized with either each antigen, alone or in combination. The development of antibody responses was evaluated through 20 weeks post-immunization. A robust IgG response to the spike protein was detected as early as 2 weeks after immunization with either protein and was maintained for over 20 weeks. Sera from animals immunized with antigens derived from the RBD were able to prevent binding of soluble spike proteins to the ACE2 receptor, shown by in vitro binding assays, while sera from animals immunized with the NTD alone lacked this activity. Crucially, sera from animals immunized with the RBD but not the NTD had potent neutralizing activity against SARS-CoV-2 pseudotyped virus, with titers in excess of 10,000, greatly exceeding that typically found in convalescent humans. Neutralizing activity persisted for more than 20 weeks. These data support the utility of spike subunit-based antigens as a vaccine for use in humans.


Sujets)
COVID-19
16.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.12.20.422820

Résumé

The humoral immune response plays a key role in suppressing the pathogenesis of SARS-CoV-2. The molecular determinants underlying the neutralization of the virus remain, however, incompletely understood. Here, we show that the ability of antibodies to disrupt the binding of the viral spike protein to the angiotensin-converting enzyme 2 (ACE2) receptor on the cell, the key molecular event initiating SARS-CoV-2 entry into host cells, is controlled by the affinity of these antibodies to the viral antigen. By using microfluidic antibody-affinity profiling, we were able to quantify the serum-antibody mediated inhibition of ACE2-spike binding in two SARS-CoV-2 seropositive individuals. Measurements to determine the affinity, concentration, and neutralization potential of antibodies were performed directly in human serum. Using this approach, we demonstrate that the level of inhibition in both samples can be quantitatively described using the binding energies of the binary interactions between the ACE2 receptor and the spike protein, and the spike protein and the neutralizing antibody. These experiments represent a new type of in-solution receptor binding competition assay, which has further potential areas of application ranging from decisions on donor selection for convalescent plasma therapy, to identification of lead candidates in therapeutic antibody development, and vaccine development.

17.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.12.21.423733

Résumé

Although a defective vitamin D pathway has been widely suspected to be associated in SARS-CoV-2 pathobiology, the status of the vitamin D pathway and vitamin D-modulated genes in lung cells of patients infected with SARS-CoV-2 remains unknown. To understand the significance of the vitamin D pathway in SARS-CoV-2 pathobiology, computational approaches were applied to transcriptomic datasets from bronchoalveolar lavage fluid (BALF) cells of such patients or healthy individuals. Levels of vitamin D receptor, retinoid X receptor, and CYP27A1 in BALF cells of patients infected with SARS-CoV-2 were found to be reduced. Additionally, 107 differentially expressed, predominantly downregulated genes modulated by vitamin D were identified in transcriptomic datasets from patient's cells. Further analysis of differentially expressed genes provided eight novel genes with a conserved motif with vitamin D-responsive elements, implying the role of both direct and indirect mechanisms of gene expression by the dysregulated vitamin D pathway in SARS-CoV-2-infected cells. Network analysis of differentially expressed vitamin D-modulated genes identified pathways in the immune system, NF-KB;cytokine signaling, and cell cycle regulation as top predicted pathways that might be affected in the cells of such patients. In brief, the results provided computational evidence to implicate a dysregulated vitamin D pathway in the pathobiology of SARS-CoV-2 infection.


Sujets)
COVID-19 , Syndrome respiratoire aigu sévère , Fuite de liquide cérébrospinal
18.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.12.21.410357

Résumé

Viruses, being obligate intracellular parasites, must first attach themselves and gain entry into host cells. Viral fusion machinery is the central player in the viral attachment process in almost every viral disease. Viruses have incorporated an array of efficient fusion proteins on their surfaces to bind efficiently to host cell receptors. They make use of the host proteolytic enzymes to rearrange their surface protein(s) into the form which facilitates their binding to host-cell membrane proteins and subsequently, fusion. This stage of viral entry is very critical and has many therapeutic implications. The current global pandemic of COVID-19 has sparked severe health crisis and economic shutdowns. SARS-CoV2, the etiological agent of the disease has led to millions of deaths and brought the scientific community together in an attempt to understand the mechanisms of SARS-CoV2 pathogenesis and mortality. Like other viral fusion machinery, CoV2 spike (S) glycoprotein- 'The Demogorgon' poses the same questions about viral-host cell fusion. The intermediate stages of S protein-mediated viral fusion are unclear owing to the lack of structural insights and concrete biochemical evidence. The mechanism of conformational transition is still unclear. S protein binding and fusion with host cell receptors, Eg., angiotensin-converting enzyme-2 (ACE2) is accompanied by cleavage of S1/S2 subunits. To track the key events of viral-host cell fusion, we have identified (in silico) that low pH-induced conformational change and ACE-2 binding events promote S1 dissociation. Deciphering key mechanistic insights of SARS-CoV2 fusion will further our understanding of other class- I fusion proteins.


Sujets)
COVID-19 , Mort
19.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.12.20.423630

Résumé

COVID-19 disease has had a relatively less severe impact in Africa. To understand the role of SARS CoV2 mutations on COVID-19 disease in Africa, we analysed 282 complete nucleotide sequences from African isolates deposited in the NCBI Virus Database. Sequences were aligned against the prototype Wuhan sequence (GenBank accession: NC_045512.2) in BWA v. 0.7.17. SAM and BAM files were created, sorted and indexed in SAMtools v. 1.10 and marked for duplicates using Picard v. 2.23.4. Variants were called with mpileup in BCFtools v. 1.11. Phylograms were created using Mr. Bayes v 3.2.6. A total of 2,349 single nucleotide polymorphism (SNP) profiles across 294 sites were identified. Clades associated with severe disease in the United States, France, Italy, and Brazil had low frequencies in Africa (L84S=2.5%, L3606F=1.4%, L3606F/V378I/=0.35, G251V=2%). Sub Saharan Africa (SSA) accounted for only 3% of P323L and 4% of Q57H mutations in Africa. Comparatively low infections in SSA were attributed to the low frequency of the D614G clade in earlier samples (25% vs 67% global). Higher disease burden occurred in countries with higher D614G frequencies (Egypt=98%, Morocco=90%, Tunisia=52%, South Africa) with D614G as the first confirmed case. V367F, D364Y, V483A and G476S mutations associated with efficient ACE2 receptor binding and severe disease were not observed in Africa. 95% of all RdRp mutations were deaminations leading to CpG depletion and possible attenuation of virulence. More genomic and experimental studies are needed to increase our understanding of the temporal evolution of the virus in Africa, clarify our findings, and reveal hot spots that may undermine successful therapeutic and vaccine interventions.


Sujets)
COVID-19 , Syndrome de Lowe
20.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.09.17.300335

Résumé

The yeast Pichia pastoris is a cost-effective and easily scalable system for recombinant protein production. In this work we compared the conformation of the receptor binding domain (RBD) from SARS-CoV-2 Spike protein expressed in P. pastoris and in the well established HEK-293T mammalian cell system. RBD obtained from both yeast and mammalian cells was properly folded, as indicated by UV-absorption, circular dichroism and tryptophan fluorescence. They also had similar stability, as indicated by temperature-induced unfolding (observed Tm were 50 {degrees}C and 52 {degrees}C for RBD produced in P. pastoris and HEK-293T cells, respectively). Moreover, the stability of both variants was similarly reduced when the ionic strength was increased, in agreement with a computational analysis predicting that a set of ionic interactions may stabilize RBD structure. Further characterization by HPLC, size-exclusion chromatography and mass spectrometry revealed a higher heterogeneity of RBD expressed in P. pastoris relative to that produced in HEK-293T cells, which disappeared after enzymatic removal of glycans. The production of RBD in P. pastoris was scaled-up in a bioreactor, with yields above 45 mg/L of 90% pure protein, thus potentially allowing large scale immunizations to produce neutralizing antibodies, as well as the large scale production of serological tests for SARS-CoV-2.


Sujets)
Syndrome respiratoire aigu sévère
SÉLECTION CITATIONS
Détails de la recherche